BCM是一个隔离和非稳压的DC-DC转换器。
PRM是一个稳压和非隔离的DC-DC转换器。
在上一段已经提到,隔离和稳压并没有由DC-DC转换的每个级,或电源链中的具体DC-DC转换器进行重复,为的是获得更高的效率。
因此,通过使用BCM和PRM模块,270V至28V DC-DC转换的整体效率达到了93.12%。
并联BCM和PRM的技术:
图5a(并联BCM)
图5a(并联BCM)
在并联BCM模块的同时,通过阻抗匹配而不是并联信号实现均流,很容易连接每个BCM模块的输入和输出,如图5a和5b所示。并联BCM应考虑以下几点。
通过对称布局完成输入和输出互连阻抗匹配,如图5b所示。
2)均匀冷却使具体BCM模块温度彼此接近。
3)每个BCM模块的启用/禁用信号(PC引脚)都需要在同一时间连接来启动每个模块。
图6(并联PRM)
为了并联PRM模块(图6),需要使用并联信号(PR引脚)来实现各个模块的均流,同时,具体模块的启用/禁用信号(PC引脚)需要连接来同时启动所有模块。如图6所示,一个PRM模块可设置为一个电源阵列中的“主”,以驱动其他负责反馈和稳压的“从”PRM模块。
正弦振幅转换器(Sine Amplitude ConverterTM ,SACTM)拓扑结构:
母线转换器模块(BCM)采用SAC拓扑结构,从而实现了卓越的效率和功率密度。
图7(SACTM 转换器)
SAC拓扑结构是BCM模块核心中的一个动态、高性能引擎。
SAC是基于变压器的串联谐振拓扑结构,它在等于初级侧储能电路谐振谐振频率的固定频率下工作。初级侧的开关FET被锁定在初级的自然谐振频率,在零交叉点来开关,从而消除了开关中的功耗,提高了效率并大大减少了高阶噪声谐波的产生。初级的谐振回路是纯正弦波(图7所示),从而可降低谐波含量,提供了更干净的输出噪声频谱。由于SAC的高工作频率,可使用较小的变压器来提高功率密度和效率。
ZVS升压-降压拓扑结构:
PRM®(前置稳压器模块)采用一个专利升压-降压稳压器控制架构,以提供高效率升压/降压稳压。
图8(ZVS升压-降压)